COT 2104 Foundations of Discrete Mathematics

Practice 3 (Answers)

1. a) { 0, 3, 6, 9, 12}

- $\{3n \mid n = 0, 1, 2, 3, 4\}$ or $\{x \mid x \text{ is a multiple of } 3 \land 0 \le x \le 12\}$
- b) {-3, -2, -1, 0, 1, 2, 3}
- $\{x \mid -3 \mid 0 \le x \le 3\}$ we are assuming that the universe of discourse is the set of integer
- or $\{x \mid x \in \mathbb{Z} \land -3 \le x \le 3\}$
- c) {m, n, o, p}
- {x | x is a letter of the word monopoly other than l or y}

2. A =
$$\{2,4,6\}$$
, B = $\{2,6\}$, C = $\{4,6\}$, D = $\{4,6,8\}$

$$B \subseteq A, C \subseteq A, C \subseteq D, B \subseteq A, A \subseteq A, B \subseteq B, C \subseteq C, and D \subseteq D$$

3)

a) {Ø} ∈ {Ø} False because the first set does not belong the second set.
b) {Ø} ∈ {{Ø}} True because the second set has the element {Ø}
c) {{Ø}} ⊆ {Ø, {Ø}} True because the first set has an element that is included in the second set too.

4) Venn Diagram $A \subseteq B, B \subseteq C$

5) Two set A and B such that $A \in B$ and $A \subseteq B$

You could find more than one answer. For example, $A = \emptyset$ and $B = \{\emptyset\}$

6) Cardinality is the number of elements in a set.

- a) \emptyset The empty set has no elements, cardinality is 0.
- b) $\{\emptyset\}$ This set has one element (the empty set), cardinality is 1.

c) { \emptyset , { \emptyset }} This set two elements, cardinality 2.

d) { \emptyset , { \emptyset }, { \emptyset }, { \emptyset }} This set has three elements, cardinality 3

6) Power set of a set A is the set of all subsets of A

a) \varnothing The power set cannot be empty. \varnothing is not the power set of any set.

b) { \emptyset , { a }} This is the power set of {a} because the power set of every no empty set includes at least the empty set.

c) { \emptyset , {a}. { \emptyset , a }} Since 3 is not a power of 2, this set cannot be the power set of any set.

d) { \emptyset , {a}, {b}, { a, b }} The power set of {a, b}

8) A={a,b,c}, B={x,y}. Find A x B (The Cartesian Product)
A x B = { (a, x), (a, y), (b, x), (b, y), (c, x), (c, y) } Note: A x B ≠ B x A

9) Show that A x B \neq B x A, when A and B are nonempty, unless A = B Suppose A \neq B and neither A nor B is empty

Since $A \neq B$, either we can find an element x that is in A but not in B, or vice versa.

Assume that x is in A but not in B

Also, since B is not empty, there is some element $y \in B$. Then (x, y) is in A x B by definition, but is not in B x A since $x \notin B$

Therefore $A \times B \neq B \times A$

10) Translate each of the quantifications into English

a) $\exists x \in R (x^3 = -1)$ There is a real number whose cube is -1. True

b) $\exists x \in Z$ ((x + 1) > x) There is an integer number such that the number obtained by adding 1 to it is greater than the integer. True (every integer satisfies this statement)

c) $\forall x \in Z$ ($(x - 1) \in Z$) For every integer, the number obtained by subtracting 1 is again an integer. True

d) $\forall x \in Z$ (($x^2 \in Z$) The square of every integer is an integer. True

11) A is the set of sophomores at your school and B is the set of the students in discrete mathematics at your school.

a) The set of sophomores taking discrete mathematics in your school. $A \cap B$ b) The set of sophomores at your school who are not taking discrete mathematics. $A \cap B^c$ (which is the same $A \setminus B$)

c) The set of students at your school who either are sophomores or are taking discrete mathematics $A \cup B$.

d) The set of students at our school who either are not sophomore or are not taking discrete mathematics

 $A^{c} \cup B^{c}$

12) $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$ a) $A \cap B = \{a, b, c, d, e, f, g, h\}$ or $A \cap B = B$ b) $A \cup B = \{a, b, c, d, e\}$ or $A \cup B = A$ c) $\mathbf{A} \setminus \mathbf{B} = \emptyset$ d) $\mathbf{B} \setminus \mathbf{A} = \{\mathbf{f}, \mathbf{g}, \mathbf{h}\}$ 13) Show that a) $A \cup \emptyset = A$ $A \cup \emptyset = \{x \mid x \in A \lor x \in \emptyset\} = \{x \mid x \in A \lor F\} = \{x \mid x \in A\} = A$ b) $A \cap \emptyset = \emptyset$ $A \cap \emptyset = \{ x \mid x \in A \land x \in \emptyset \} = \{ x \mid x \in A \land F \} = \{ x \mid F \} = \emptyset$ c) $A \cup A = A$ $A \cup A = \{ x \mid x A \lor x \in A \} = \{ x \mid x \in A \} = A$ d) $A \setminus \emptyset = A$ $A \setminus \emptyset = \{x \mid x \in A \land x \notin \emptyset\} = \{x \mid x \in A \land T\} = \{x \mid x \in A\} = A$ 14) $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, and C = \{4, 5, 6, 7, 8, 9, 10\}$ a) $A \cap B \cap C$ $A \cap B \cap C = \{4, 6\}$ b) $(\mathbf{A} \cup \mathbf{B}) \cap \mathbf{C}$ $(A \cup B) \cap C = \{4, 5, 6, 8, 10\}$ 15) Show that a) $(A \cap B) \subseteq A$ If x is in $A \cap B$, then x is in A and x is in B (by definition of intersection) The result set is a subset of A b) $A \setminus B \subseteq A$ If x is in A\ B, then x is in A, but not in B(by definition of difference). A set A is a subset of itself. 16) Show that a) $(A \cup B) \subseteq (A \cup B \cup C)$ Suppose $x \in (A \cup B)$, then either $x \in A$ or $x \in B$. In either case, certainly $x \in A \cup B \cup C$. This establishes the desired conclusion. b) $(A \setminus B) \setminus C \subseteq A \setminus C$ Suppose that $x \in (A \setminus B) \setminus C$, then x is A\B but not in C

Since $x \in A \setminus B$, $x \in A$ and $x \notin B$

Since $x \in A$ but $x \notin C$, we have proved that $x \in A \setminus C$

17) $\{1, 3, 5\}$ and $\{1, 2, 3\}$ $\{1, 3, 5\} \oplus \{1, 2, 3\} = \{2, 5\}$

18) Symmetric Difference (Venn Diagram)

19) Show that $A \oplus B = (A \setminus B) \cup (B \setminus A)$

Suppose (A\B) x can be in A but not in B or
(B\A) x can be in B but not in A
Thus, an element is in A ⊕ B if and only if it is in (A\B) ∪ (B\A)

20) Determine whether the following defines an equivalence relation on the set A.

a) A is the set of all lines in the plane; a ~ b if and only if a is perpendicular to b.

Equivalence relation on a set A is a binary relation \mathcal{R} on A that is reflexive, symmetric, and transitive (see pages 51-63 from your text book or the class notes (power point).

The process is:

- 1) Reflexive: If a is a line, then a is not parallel to itself. The reflexive property does not hold because no line is perpendicular to itself.
- Symmetric: If a ~ b a is perpendicular to be. Thus, b is perpendicular to a. Hence, b ~ a. The symmetric property holds.
- 3) Transitive: If a ~ b and b ~ c, then a is perpendicular to b and b is perpendicular to c, then a and c are parallel, not perpendicular to one another. The transitive property does not hold because a is not perpendicular to c.

Conclusion This is not an equivalence relation because two the three properties (reflexive, symmetric, and transitive) do not hold.