Practice 3 (Answers)

1.

a) $\{0,3,6,9,12\}$
$\{3 n \mid n=0,1,2,3,4\}$ or $\{x \mid x$ is a multiple of $3 \wedge 0 \leq x \leq 12\}$
b) $\{-3,-2,-1,0,1,2,3\}$
$\{x \mid-30 \leq x \leq 3\}$ we are assuming that the universe of discourse is the set of integer
or $\{x \mid x \in Z \wedge-3 \leq x \leq 3\}$
c) $\{\mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}\}$
$\{x \mid x$ is a letter of the word monopoly other than 1 or $y\}$
2. $A=\{2,4,6\}, B=\{2,6\}, C=\{4,6\}, D=\{4,6,8\}$
$\mathbf{B} \subseteq \mathbf{A}, \mathbf{C} \subseteq \mathbf{A}, \mathbf{C} \subseteq \mathbf{D}, \mathbf{B} \subseteq \mathbf{A}, \mathbf{A} \subseteq \mathbf{A}, \mathbf{B} \subseteq \mathbf{B}, \mathbf{C} \subseteq \mathbf{C}, \quad$ and $\mathbf{D} \subseteq \mathbf{D}$
3)
a) $\{\varnothing\} \in\{\varnothing\} \quad$ False because the first set does not belong the second set.
b) $\{\varnothing\} \in\{\{\varnothing\}\}$ True because the second set has the element $\{\varnothing\}$
c) $\{\{\varnothing\}\} \subseteq\{\varnothing,\{\varnothing\}\}$ True because the first set has an element that is included in the second set too.
4) Venn Diagram $\mathbf{A} \subseteq \mathbf{B}, \quad \mathbf{B} \subseteq \mathbf{C}$

5) Two set A and B such that $A \in B$ and $A \subseteq B$

You could find more than one answer. For example, $A=\varnothing$ and $B=\{\varnothing\}$
6) Cardinality is the number of elements in a set.
a) \varnothing The empty set has no elements, cardinality is 0 .
b) $\{\varnothing\}$ This set has one element (the empty set), cardinality is $\mathbf{1}$.
c) $\{\varnothing,\{\varnothing\}\}$ This set two elements, cardinality 2 .
d) $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$ This set has three elements, cardinality 3
6) Power set of a set A is the set of all subsets of A
a) \varnothing The power set cannot be empty. \varnothing is not the power set of any set.
b) $\{\varnothing,\{$ a $\}\}$ This is the power set of $\{a\}$ because the power set of every no empty set includes at least the empty set.
c) $\{\varnothing,\{a\} .\{\varnothing$, a $\}\}$ Since 3 is not a power of 2 , this set cannot be the power set of any set.
d) $\{\varnothing,\{a\},\{b\},\{a, b\}\}$ The power set of $\{a, b\}$
8) $A=\{a, b, c\}, B=\{x, y\}$. Find $A \times B$ (The Cartesian Product)

9) Show that $A \times B \neq B \times A$, when A and B are nonempty, unless $A=B$

Suppose $A \neq B$ and neither A nor B is empty
Since $A \neq B$, either we can find an element x that is in A but not in B, or vice versa.

Assume that x is in A but not in B
Also, since B is not empty, there is some element $y \in B$. Then (x, y) is in $A x B$ by definition, but is not in $B \times A$ since $x \notin B$

Therefore AxB\#BxA
10) Translate each of the quantifications into English
a) $\exists x \in R\left(x^{3}=-1\right)$ There is a real number whose cube is -1 . True
b) $\exists x \in \mathbf{Z}((x+1)>x)$ There is an integer number such that the number obtained by adding 1 to it is greater than the integer. True (every integer satisfies this statement)
c) $\forall \mathbf{x} \in \mathbf{Z}((\mathbf{x}-\mathbf{1}) \in \mathbf{Z})$ For every integer, the number obtained by subtracting $\mathbf{1}$ is again an integer. True
d) $\forall \mathbf{x} \in \mathbf{Z}\left(\left(\mathbf{x}^{2} \in \mathbf{Z}\right)\right.$ The square of every integer is an integer. True
11) A is the set of sophomores at your school and B is the set of the students in discrete mathematics at your school.
a) The set of sophomores taking discrete mathematics in your school. A $\cap B$
b) The set of sophomores at your school who are not taking discrete mathematics.
$A \cap B^{c}$ (which is the same $A \backslash B$)
c) The set of students at your school who either are sophomores or are taking discrete mathematics $\mathbf{A} \cup B$.
d) The set of students at our school who either are not sophomore or are not taking discrete mathematics
$\mathbf{A}^{\mathfrak{c}} \cup \mathbf{B}^{\mathfrak{c}}$
12) $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$
a) $. A \cap B=\{a, b, c, d, e, f, g, h\}$ or $A \cap B=B$
b) $\mathbf{A} \cup \mathbf{B}=\{\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ or $\mathbf{A} \cup \mathrm{B}=\mathbf{A}$
c) $\mathbf{A} \backslash \mathbf{B}=\varnothing$
d) $\mathbf{B} \backslash \mathbf{A}=\{\mathbf{f}, \mathbf{g}, \mathbf{h}\}$
13) Show that
a) $\mathbf{A} \cup \varnothing=\mathbf{A}$
$\mathbf{A} \cup \varnothing=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \vee \mathbf{x} \in \varnothing\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \vee \mathbf{F}\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A}\}=\mathbf{A}$
b) $\mathbf{A} \cap \varnothing=\varnothing$
$\mathbf{A} \cap \varnothing=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \wedge \mathbf{x} \in \varnothing\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \wedge \mathbf{F}\}=\{\mathbf{x} \mid \mathbf{F}\}=\varnothing$
c) $\mathbf{A} \cup \mathbf{A}=\mathbf{A}$
$\mathbf{A} \cup \mathbf{A}=\{\mathbf{x} \mid \mathbf{x} \mathbf{A} \vee \mathbf{x} \in \mathbf{A}\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A}\}=\mathbf{A}$
d) $\mathbf{A} \backslash \varnothing=\mathbf{A}$
$\mathbf{A} \backslash \varnothing=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \wedge \mathbf{x} \notin \varnothing\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A} \wedge \mathbf{T}\}=\{\mathbf{x} \mid \mathbf{x} \in \mathbf{A}\}=\mathbf{A}$
14) $A=\{0,2,4,6,8,10\}, B=\{0,1,2,3,4,5,6\}$, and $C=\{4,5,6,7,8,9,10\}$
a) $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$
$A \cap B \cap C=\{4,6\}$
b) $(\mathbf{A} \cup \mathbf{B}) \cap \mathbf{C}$
$(A \cup B) \cap C=\{4,5,6,8,10\}$
15) Show that
a) $(\mathbf{A} \cap \mathbf{B}) \subseteq \mathbf{A}$

If x is in $A \cap B$, then x is in A and x is in B (by definition of intersection) The result set is a subset of A
b) $\mathbf{A} \backslash \mathbf{B} \subseteq \mathbf{A}$

If x is in $A \backslash B$, then x is in A, but not in B (by definition of difference). A set A is a subset of itself.
16) Show that
a) $(\mathbf{A} \cup B) \subseteq(A \cup B \cup C)$

Suppose $x \in(A \cup B)$, then either $x \in A$ or $x \in B$.
In either case, certainly $x \in A \cup B \cup C$. This establishes the desired conclusion.
b) $(\mathbf{A} \backslash \mathrm{B}) \backslash \mathbf{C} \subseteq \mathbf{A} \backslash \mathbf{C}$

Suppose that $x \in(A \backslash B) \backslash C$, then x is $A \backslash B$ but not in C
Since $x \in A \backslash B, x \in A$ and $x \notin B$
Since $x \in A$ but $x \notin C$, we have proved that $x \in A \backslash C$
17) $\{1,3,5\}$ and $\{1,2,3\}$
$\{1,3,5\} \oplus\{1,2,3\}=\{2,5\}$
18) Symmetric Difference (Venn Diagram)

19) Show that $A \oplus B=(A \backslash B) \cup(B \backslash A)$

Suppose ($A \backslash B$) x can be in A but not in B or $(B \backslash A) x$ can be in B but not in A
Thus, an element is in $A \oplus B$ if and only if it is in $(A \backslash B) \cup(B \backslash A)$
20) Determine whether the following defines an equivalence relation on the set A.
a) A is the set $o f$ all lines in the plane; $a \sim b$ if and only if a is perpendicular to b.

Equivalence relation on a set A is a binary relation \mathcal{R} on A that is reflexive, symmetric, and transitive (see pages 51-63 from your text book or the class notes (power point).

The process is:

1) Reflexive: If a is a line, then a is not parallel to itself. The reflexive property does not hold because no line is perpendicular to itself.
2) Symmetric: If $a \sim b$ a is perpendicular to $b e$. Thus, b is perpendicular to a. Hence, $b \sim a$. The symmetric property holds.
3) Transitive: If $a \sim b$ and $b \sim c$, then a is perpendicular to b and b is perpendicular to c, then a and c are parallel, not perpendicular to one another. The transitive property does not hold because a is not perpendicular to c.

Conclusion This is not an equivalence relation because two the three properties (reflexive, symmetric, and transitive) do not hold.

